Tetramethylpyrazine Protects against Hydrogen Peroxide-Provoked Endothelial Dysfunction in Isolated Rat Aortic Rings: Implications for Antioxidant Therapy of Vascular Diseases

نویسندگان

  • Xiaojia Ni
  • Siu Ling Wong
  • Chi Ming Wong
  • Chi Wai Lau
  • Xiaogeng Shi
  • Yefeng Cai
  • Yu Huang
چکیده

Background and Objectives. Oxidative stress can initiate endothelial dysfunction and atherosclerosis. This study evaluated whether tetramethylpyrazine (TMP), the predominant active ingredient in Rhizoma Ligustici Wallichii (chuanxiong), prevents endothelial dysfunction in a rat model of oxidative stress. Methods. Isolated rat aortic rings were pretreated with various drugs before the induction of endothelial dysfunction by hydrogen peroxide (H2O2). Changes in isometric tension were then measured in acetylcholine- (ACh-) relaxed rings. Endothelial nitric oxide synthase (eNOS) expression was evaluated in the rings by Western blotting, and superoxide anion (O2 (∙-)) content was assessed in primary rat aortic endothelial cells by dihydroethidium- (DHE-) mediated fluorescence microscopy. Results. ACh-induced endothelium-dependent relaxation (EDR) was disrupted by H2O2 in endothelium-intact aortic rings. H2O2-impaired relaxation was ameliorated by acute pretreatment with low concentrations of TMP, as well as by pretreatment with catalase and the NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI). TMP, apocynin, and DPI also reduced O2 (∙-) accumulation in endothelial cells,but TMP failed to alter eNOS expression in aortic rings incubated with H2O2. Conclusions. TMP safeguards against oxidative stress-induced endothelial dysfunction, suggesting that the agent might find therapeutic utility in the management of vascular diseases. However, TMP's role in inhibiting NADPH oxidase and its vascular-protective mechanism of action requires further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Lovastatin Incubation Improves Acetylcholine-Induced Relaxation in Isolated Aortic Rings of Diabetic Rat

To evaluate the acute effect of lovastatin on diabetic endothelial dysfunction, we examined this effect on the aortic rings of streptozotocin-diabetic rats. The endothelial function was assessed in aortic rings isolated from diabetic rats, 12 weeks after treatment with streptozotocin (45 mg/kg, i.p.). The concentration-response curve to acetylcholine (Ach) in the aortic rings precontracted with...

متن کامل

Lovastatin Incubation Improves Acetylcholine-Induced Relaxation in Isolated Aortic Rings of Diabetic Rat

To evaluate the acute effect of lovastatin on diabetic endothelial dysfunction, we examined this effect on the aortic rings of streptozotocin-diabetic rats. The endothelial function was assessed in aortic rings isolated from diabetic rats, 12 weeks after treatment with streptozotocin (45 mg/kg, i.p.). The concentration-response curve to acetylcholine (Ach) in the aortic rings precontracted with...

متن کامل

[Novel antioxidant therapeutic strategies for cardiovascular dysfunction associated with ageing].

UNLABELLED Overproduction of free radicals in ageing tissues induces nitro-oxidative stress, which has been implicated in the functional decline of the cardiovascular system at old age. Toxic oxidants like hydrogen peroxide or peroxynitrite damage proteins and DNA and activate several pathways causing tissue injury, including the poly(ADP-ribose) polymerase (PARP) pathway. AIM First, we teste...

متن کامل

The roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta

Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014